
4D-A172 592 ANNLSI St OA SM PU TAIN* IT IfNT i/L

NCILASSIFIED SN~ 1 [U U 12/1~ HI

71D



tIIII - ,,,1.0 2-6 l)lg

liI (li-lw ii1'-5



7NRC Technical 
Summary Report 

*2941

ANAYSI OF A SINGULARLY-PERTURBED

LINEAR TWO-POINT BOUNDARY-VALUE
PROBLEM4

N
00

10 Warren E. Ferguson, Jr.

mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53705 CD.T i C
July 196

~OCT~C 8 1%6

I(Received February 26, 1986) B E

nil'F~j ~() ~Approved for public release
UIPJ *Distribution unlimited

* Sponsored by

*U. S. "ra Research office U. S. Department of Energy
*P. o. box 12211 Washington, DC 20545

*Researeh Triangle Park
Wborth Carolina 27709

86 10



UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

ANALYSIS OF A SINGULARLY-PERTURBED LINEAR
TWO-POINT BOUNDARY-VALUE PROBLEM

Warren E. Ferguson, Jr.

Technical Summary Report #2941

July 1986

ABSTRACT

Consider as C + 04, the solution

y(x) = {1 - exp(-x/E)} / {1 - exp(-1/E)1

of the following singularly-perturbed linear two-point boundary-value problem

C y''(x) + y'(x) - 0, y(0) - 0, y(1) - I •

When this problem is cast as a system of first-order differential equations,
using the substitution y, = y and Y2 - y', one is led to consider the
problem

[1 0 - o _, [0,1. 1 0

0 o c x 2(x) i o0 1

As C + 0+  the solution of this first order system has the property that

Y2(0) blows up like C-1 while y1 (x) remains uniformly bounded on [0,11.

This paper presents a simple constructive method of solving such singularly-
perturbed linear two-point boundary-value problems, a method which has been
generalized to analyze the solution of such problems by finite different
schemes based on Euler's method.

NMS (MOS) Subject Classifications: 34B27, 34E15, 65L10

Key Words: Ordinary Differential Equations, Boundary-Value Problem,
Singularly-Perturbed, Green's Function, Constructive Methods,
A Priori Bounds, Difference Schemes.
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SIGNIFICANCE AND EXPLANATION

This paper presents a simple constructive proof of the existence of

solutions to a class of singularly-perturbed linear two-point boundary-value

problems. Such problems arise when detailed models of physical phenomena

involve effects that occur on markedly different temporal or spatial scales,

the (singularly) small parameter measuring the disparity between the scales.

This simple constructive proof, through slight modification, also allows one

to prove the existence of solutions of a class of difference schemes used to

approximate the solution of the continuous problem.

.. r

* I"

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.
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ANALYSIS OF A SINGULARLY-PERTURBED LINEAR

O-POINT BOUDARY-VALUE PROBLEM

Warren E. Ferguson, Jr.

1. Introduction

When a high-order singularly-perturbed linear two-point boundary-value problem is cast

as a first-order system of differential equations, it is usually the case that the solution

of this first order system does not remain uniformly bounded as the small parameter tends

to zero. This leads us to consider, as £ + 0+, a differential equation on [0,1] of the

form

d Y1 (x) A 11 (x) A 12 (x) CA 13 (x) y I(x) f I(x)

S l(x) A (x) A (x) A 1)() f
I Idx 2 if 21 22 23() y2( f2(L I c3 y(x) J CA31 x) A 32 (x) A 33(x)j Y3Cx)1f 3(X)J

subject to appropriate boundary conditions. Rere it is assumed that the real parts of the

eigenvalues of A11(x) are negative while those of A33 (x) are positive. In this paper

reasonable general conditions are placed on the boundary condition which ensure that the

solution y of this differential equation satisfies the following:

Requirement 1.1: For all sufficiently small positive c

lim+ Y2(0)

exists and is finite.

Problems of this type have been considered by other authors 16,11]. What

distinguishes the analysis presented in this paper is the fact that a straightforward

analog can also be used to analyze the stability and consistency properties of difference

Mathematics Department, Southern Methodist University, Dallas, TX 75275.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the U. S.
Department of Energy under Contract No. DE-ALO2-82ER12046AO00.



schemes used to solve this problem.

In section 2 we precisely define the class of singularly-perturbed linear two-point

boundary-value problems to be studied. In sections 3 and 4 a simple constructive technique

is presented which allows one to characterize, in a reasonable general manner, when such

singularly-perturbed boundary-value problems admit a solution satisfying Requirement 1.1.

In section 5 applications of the results presented in sections 3 and 4 are described.
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2. Preliminaries

Consider the following two boundary-value problems RV(v) for V = G, S which differ

only in the boundary conditions imposed on their solutions:

Ly = f and =(V)y - g(V)

where

EL) x d FY(X) A 11(x) A 12 (x) CA13 (x) Fyi(x)]
FL) 1x - W2 x A2 1(x) A22 (x) A23 x W y (x)

L I C' 3 x) LA 31(x) A 32CX) A 33 x) Y CX)

and

The unique solvahility of the general problem BV(G) will he related to the unique

solvability of the special problem By(S) under the following assumptions.

Assumptions 2.1: For all sufficiently small positive L:

0) n - n, + n2 + n3,

1) the components yi(x), fi(x), and g[v) of the n-vectors

y(x), f(x), and g(V) respectively are ni-vectors,

2) the order ni by nj matrices A.j(x) - Aij (xiL) depend

smoothly on x and L,

3) the vector f(x) - f(xlc) depends smoothly on x and L,

4) the order n matrices R -
G )  

B G) (e), a r
) 

. B(G)C

and order n vectors g(V) = gWV)(e), depend smoothly on c,

5) [LS) I and B(S) 0 L are order n matrices,

6) for some Positive constant U independent of c the eiqenvalues of

All(x) have real part less than -V while the eigenvalues of A2 2 (x)

have real part greater than +U.

By smooth dependence on x and/or L we mean that all possible derivatives with respect

to x and/or e exist and are continuous.

-3-



When one formally sets e - 0 the differential equation Ly - f reduces to the

following familiar reduced system of algebraic-differential equations

y(x) - -1 (x)(A (X)Y (x) + f (x))1 11 12 2 x f1

(x) - A22(xy 2 (x) + f (x) , and

y(x) - -A331(x)[A (x)y2 (x) + f3 (x)]3. 33 32 2 3

where

A2 2 (x) A2 2 (x) - A21(x)A 1 (x)A 2(x) - A2 (x)A,1WA3(x), and
22 22 21 11 12 23 (x) 3 3 x) 3 2(x

f;(x, = f2(x) A 21(x)A I(X)f (x) - A (x)A I(x)f (x) 
2 2 21 11 1 x-A 2 3 x) (x3 3x

When assumptions 2.1 hold, standard results in singular perturbation theory suggest that

as C + 0+ the solution of BV(S) approximately satisfies this reduced system of

algebraic-differential equations in each fixed open subinterval of [0,1].

The proof of the unique solvability of BV(S) begins by casting the BV(S) as an

equivalent operator equation acting on an appropriate Sanach space. To cast BV(S) into

an equivalent operator equation we will use the fundamental solution matrices YJ(xS),

Y2 (xs), and Y3(xs) defined as follows:

C L- Y (x,s) - A11(x)Y (xs) , Y1(s,s) = I ,ax 1 1

a Y (x,s) - A2 2 (x)Y2 (xs) , Y2(s,s) - I , and
ax 2 2

C Wx Y3(xs) - A33 (x)Y3(xs) , Y3(sS) - I

Assumptions 2.1 and well-known results for initial-value problems guarantee the existence

of these fundamental solution matrices.

The results presented in this paper depend primarily on three fundamental theorems.

The first theorem relates the unique solvability of BV(G) to the unique solvability of

Bv(S).

-4-
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Theorem 2.2: Let WV(S) be uniquely solvable. Define y(S) to he the fundamental

solution matrix of 8V(S), that is

LY(S ) - 0 and B(S)Y(s ) a I

Then %V(G) is uniquely solvable if and only if the matrix B(G)Y(S) is nonsingular.

This theorem, whose proof can be found in (8,9], was used by Keller to show that a

difference scheme is stable and consistent for a uniquely solvable boundary-value problem

if and only if it is stable and consistent for the related initial-value problem. The

proof of this theorem for difference equations rest on Kron's method of tearing (121; the

boundary conditions of the boundary-value problem are torn from the matrix describing the

difference scheme and replaced by the boundary conditions of the related initial-value

problem. This idea of replacing one set of boundary conditions by another underlies the

proof that BV(G) is uniauely solvable.

The second theorem, whose proof can be found in 14), orovides needed estimates on the

size of the fundamental solution matrices Yj and Y3 "

Theorem 2.3: There exist positive constants K and X, independent of C, such that

Iy (x,s)l ( K e"k(x - s )/  for 0 < s < x < I , and

ly (xs)I < K e "A ~s -x )/ S for 0 < x < s < I

for all sufficiently small positive e.

rn this theorem the norm 1-1 used is any fixed n-vector norm, say the infinity

vector norm. Note that the condition that C be sufficiently small is important E1,211

for unless c is sufficiently small IY,(x,s)I need not decay with increasing (x-s)

even though the eiqenvalues of A1 1 (x) have uniformly neqative real part.

The third theorem, whose proof can be found in (7], states that operators in a Banach

space sufficiently near the identity are invertible. The Sanach space Cn  used in this

theorem consists of the space of n-vector valued functions of x, continuous on (0,11,

endowed with the norm II defined by:

If(x)I 1 max If(x) .

45--



Theorem 2.4: Let B be an operator on the Ranach space C. which admits the bound

IRK < 1. Then I-9 is invertible with

(t-R) -1 = 5 , and I -() - < BI B<

-=0 1=o = Ila

This theorem will be used to obtain a generalized power series expansion of the solution of

both RV(S) and BV(G).
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3. Solution of the Special Problem

Let us now show that, for all sufficiently small positive c, the speical problem

BV(S) is uniquely solvable. hs stated in section 2, the first step is to cast BV(S) as

an equivalent operator equation actinq on the Banach space Cn"

Lemma 3.1: y(x) is a solution of BV(S) if and only if it is a solution of the operator

equation

Ly= F

where

_X A12-KIA3

L E -iX2A2 1 l-12 (A22 -A;2) -X2A2 , and

3 A 31 -K 3A32 -,

- (S)( Y1 (*,0)g 1  + X1I f

(S) K2 f 2 I

F Y 2 (
,O)q2(S) + X f

C_1Y(*,1)g ()+

with

(X w) (x) S C-  Y (x's)wls) as
1 0 1

(K w) (x) S fx Y (x,s)wls) ds , and
2 0 2

('Cw ) (x) fl - X Y (x's )w(s) ds
3 1 3

Proof: Consider the initial-value problem

d1 w(x) - C(x)w(x) = h(x) and w(O) =n

whose fundamental solution matrix Y(x,s) satisfies the matrix initial-value problem

Y(x,s) - C(x)Y(x,s) - 0 and Y(s,s) 1

The variation of parameters formula states that the solution of this initial-value problem

admits the representation

-7-
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w(x) - Y(x,O)n + fx Y(x,s)h(s) ds

Suppose then that y(x) is a solution of BV(S). Applying the variation of parameters

formula to each component of the differential equation Ly - f, and the boundary-

conditions specified by B(S)y = (S), shows that y(x) is also a solution of the

operator equation Ly - F. Conversely, suppose that y(x) is a solution of the operator

equation Ly = F. Then y(x) clearly satisfies the boundary conditions B (S)y - g(S) and

differentiation of each component of the operator equation shows that y(x) is also a

solution of Ly = f.

0

To solve the integral equation Ly = F note that it is possible to compute, for all

sufficiently small positive E, an approximate inverse of L.

Lemma 3.2: For all sufficiently small positive C

J0L - I - EM

where

0 = [~i 1 [KY1A12 1
J0 0 1+ 2[KA21 1 -2 A2 3 1L A

KIA2K2A 23K3A31 KA 12N 2  K1(A 12K2A 21K+I)A 1

M = 2A23K3A31 N 2  K2A 2 1K 1 3 , and

(K3 (A 3 2 K 2AK3+I)A3 KA32N2  K3A32K2A2KA3!
K3(32K2A23 X3 +IA31 K3 A32 N2 K3 A32 K2 A21 K1 A13

N 2 - -1K 2 [A22 + A2 1KIA 12 + A2 3K 3A 32 - A2 2]

are operators on Cn which are bounded independently of c.

Proof: It is a simple matter to multiply J0 by L and verify the product is indeed

I - CM. To show that Jo and M are bounded independently of c, for all sufficiently

small positive C, one uses Theorem 2.3. For example, to prove that N2  is bounded first

change the order of integration in the double integrals yielding (N2w)(x), substitute for

the fundamental solution matrices Yj and Y3 the expressions

-8- 
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YI(x,s) = A A Ix) - Y(xs), and Y (x,s) = £ A (x) - Y3 (xs)li ax 13 33 ax 3

then perform an integration by parts and recall the definition of A22 (x) before applying

Theorem 2.1.

0

Using Theorem 2.4 we can now obtain, for all sufficiently small positive £, a

convergent generalized power series expansion for L-1 , the fundamental solution matrix

'(S ) , and the solution.

Theorem 3.4: For all sufficiently small positive c, L-  exists and admits the following

generalized power series expansion:

E=0

Corollary 3.5: For all sufficiently small positive c, y(S) exists and admits the

following generalized power series expansion:

F£1IY .001
Y =0 L-) , 2 ,

Corollary 3.6: For all sufficiently small positive c, BV(S) has a unique solution y

which admits the following generalized power series expansion:

-I y 1 (.,)q ) + K f). 1l 1 1

L 0  2 , 2  + K2 2
t=0

E-1y CO~ S)+Kf
1 3 ,0)g 3  + 3i

As shown by Theorem 2.4, when the above infinite sums are truncated after the term

t=N the resulting approximations to L-, y(s), and y are Q(cO) accurate as £ + 0+ .

When the solution y of Ly - f satisfies Requirement 1.1 the following Corollary

shows that y2 (x) remains bounded on [0,1] as c + 0+. A more detailed calculation,

-9-



such as that provided by the method of matched asymptotic expansions (3], is needed to show

that when the solution y of LV - f satisfies Requirement 1.1 both y1 (x) and Y3(:.

remain bounded on each fixed open subinterval of [0,1] as + 0

Corollary 3.7: For all sufficiently small positive C, BV(S) has a unique solution y

which admits the following a priori hounds:

fly <K " I1(0)1 + ly2(0)! + ClY3(i)' + NY + If21 1 + If3l' '

Ny I < K {£1 (0)! + ly (0)1 + LIV (1)1 + if I + If I + If 1} , and
2 = 1 2 3 1 2 1 3

lY I < K {Ely (o)l + y (m)l + Iy (1)! + if I + if I + If 1I
3 = 1 2 3 1 2 1 3

qere the norm Ifli of a function f(x) is defined as

IfI 1 f'If(x)I dx

-10-



4. Solution of the General Problem

By combining Theorem 2.2 and Corollary 3.5 one arrives at a explicit method for

determining the unique solvability of BV(G). Recall that by Theorem 2.2, BV(G) is

uniquely solvable if and only if B(G)Y(S) is nonsingular. To arrive at reasonably

general conditions under which the solution of BV(G) exists and satisfies Requirement 1.1

let us follow Harris [6] and introduce the following definition.

Definition 4.1: BV(G) is said to be regular if and only if it admits Assumptions 2.1 and

the matrix

R - lim+ 8(G)Y
(S )

exists and is nonsingular.

Note that the smoothness requirement of Assumptions 2.1 allow us to compute R using

the equivalent formula

-1Y1 1 0)

R= un +(G) (I+EM)Jo Y2 (*
'0)

C+O

E- Y3( ,1)

Theorem 4.2: If BV(G) is regular then for all sufficiently small positive .6 it is

uniquely solvable and its solution y satisfies Requirement 1.1.

Proof: By a continuity argument the nonsinqularity of R and the assumed smoothness

properties of BV(G) guarantee that B(G)Y(S) is nonsingular for all sufficiently small

positive c. Therefore, by Theorem 2.2, RV(G) is uniquely solvable for all sufficiently

small positive C. To verify that the solution of BV(G) satisfies Requirement 1.1 let us

observe that it admits the representation

y - (LM)IIJ C_ Y 1(0 . )(C y1 (0)) + K If
0 y.(o,.){ y2(o) + 22

-- Y (-,1){ Ey (1)} + 3 f3j

-11-
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The smoothness requirements in Assumptions 2.1 and the regularity of BV(G) assure us that

the limit

li+ y 2 (0) ( 1i 8 (G)y(S) -1 g(G) - (G) (Cm)L]j 0 IK2f 2

C cy 3 () l)J.0K3

exists and is finite.

0

-12-



5. Conclusions

Similar techiques can be used to establish the stability and consistency properties of

finite difference approximations to BV(v) for V - G, S based on Ruler's method. This

finite differenco scheme 13,101, with step size h, uses the backward Euler scheme to

approximate the differential equation for yl, the box scheme of Keller (centered Euler)

to approximate the differential equation for Y2 . and the forward Euler scheme to

approximate the differential equation for y3. This scheme is Q(h2) accurate as h + 0

uniformly in c, in each fixed open subinterval of [0,1].

The a priori estimates of Corollary 3.7 can also be used, as in [3], to show that the

method of matched asymptotic expansions does indeed yield an asymptotically correct

estimate of the solution of OV(G) as C + 0+ . These a priori estimates can also be used

to prove the existence of solutions of a class of nonlinear singularly perturbed boundary-

value problems when the method of matched asymptotic expansions is coupled with the Newton-

Kantorovich theorem.

More general boundary-value problems of the form

S1 (x) - 1c1(() C2 2 (x) z (x)J - 1f2 (x)j Sz - q

1C11(x) Ci()zixI W fi xi

can also be analyzed by this technique under the restriction that the eigenvalues of

C22(x) have real parts whose absolute value is bounded away from zero. For such problems

a preliminary block diagonalization of C22(x) must be performed before the results of

sections 3 and 4 can be applied. This block diagonalization of C22(x) involves the

existence of a smooth nonsingular matrix U(x) with the property that

C2 2 (x)U(x) - U(x) C 22 +

where the real parts of the eigenvalues of C 2(x)} are negative (positive). The

existence of such a similarity transformation is established in [3,5].

These results summarize part of a thesis [3] written under the direction of Dr. H. B.

Keller. I would like to thank Dr. Keller for suggesting this problem to me and for his

supervision of my studies at the California Institute of Technology.

-13-
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As E + 0+ the solution of this first order system has the property that

Y2 (0) blows up like 1 while y1 (x) remains uniformly bounded on (0,1].
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